Simulink and Advanced
Topics in MATLAB

]34

KT

[=]

Simulink and Advanced
Topics in MATLAB

University of South-Eastern Norway

MATLAB for Students A‘

MATLAB

Simulink and Advanced Topics

Hans-Petter Halvorsen, 2022.08.17

8 0 0 P2 mass_spring_damper
File Edit View Display Diagram Simulation Analysis Code Tools Help

- @ EE@e-E- 4 ® P - ©- [| » @~

mass_spring_damper -~

BEuER|

:
:

o e

b
Ready 100% odeds y

http://www.halvorsen.blog

MATLAB

The Language of Technical Computing

http://www.halvorsen.blog/

Preface

Copyright You cannot distribute or copy this document without
permission from the author. You cannot copy or link to this document
directly from other sources, web pages, etc. You should always link to the
proper web page where this document is located, typically
http://www.halvorsen.blog

In this MATLAB Course, you will learn basic MATLAB and how to use
MATLAB in Control and Simulation applications. An introduction to
Simulink and other Tools will also be given.

MATLAB is a tool for technical computing, computation and visualization in
an integrated environment. MATLAB is an abbreviation for MATrix
LABoratory, so it is well suited for matrix manipulation and problem
solving related to Linear Algebra, Modelling, Simulation and Control
applications.

This is a self-paced course based on this document and some short videos
on the way. This document contains lots of examples and self-paced tasks
that the users will go through and solve on their own. The user may go
through the tasks in this document in their own pace and the instructor
will be available for guidance throughout the course.

The MATLAB Course consists of 3 parts:

1. Introduction to MATLAB
2. Modelling, Simulation and Control
3. Simulink and Advanced Topics

In Part 3 of the course, you will learn how to use some of the more
advanced features in MATLAB. We will also take a closer look at Simulink,
which is a Block Diagram Simulation Tool used together with MATLAB. We
will also give an overview to other tools for numerical mathematics and
simulation.

You must go through MATLAB Course - Part 1: Introduction to MATLAB
before you start.

http://www.halvorsen.blog/

The course consists of lots of Tasks you should solve while reading this
course manual and watching the videos referred to in the text.

Make sure to bring your headphones for the videos in this
course. The course consists of several short videos that will give you an
introduction to the different topics in the course.

Prerequisites: You should be familiar with undergraduate-level
mathematics and have experience with basic computer operations.

What is MATLAB?

MATLAB is a tool for technical computing, computation, and visualization
in an integrated environment. MATLAB is an abbreviation for MATrix
LABoratory, so it is well suited for matrix manipulation and problem
solving related to Linear Algebra.

MATLAB is developed by The MathWorks. MATLAB is a short-term for
MATrix LABoratory. MATLAB is in use world-wide by researchers and
universities.

For more information, see www.mathworks.com

What is Simulink?

MATLAB offers lots of additional Toolboxes for different areas such as
Control Design, Image Processing, Digital Signal Processing, etc.

Simulink, developed by The MathWorks, is a commercial tool for modeling,
simulating and analyzing dynamic systems. Its primary interface is a
graphical block diagramming tool and a customizable set of block libraries.
It offers tight integration with the rest of the MATLAB environment and
can either drive MATLAB or be scripted from it. Simulink is widely used in
control theory and digital signal processing for simulation and design.

This training will give you the basic knowledge of Simulink and how you
can use it together with MATLAB.

For more information about MATLAB, Simulink, etc., please visit
http://www.halvorsen.blog

http://www.mathworks.com/
http://www.halvorsen.blog/

Online MATLAB Resources:
MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/

MATLAB Basics:

http://www.halvorsen.blog/documents/programming/matlab/matlab basics.php

Modelling, Simulation and Control with MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/matlab mic.php

MATLAB Videos:

http://www.halvorsen.blog/documents/video/matlab basics videos.php

MATLAB for Students:

http://www.halvorsen.blog/documents/teaching/courses/matlab.php

On these web pages you find video solutions, complete step by step
solutions, downloadable MATLAB code, additional resources, etc.

http://www.halvorsen.blog/documents/programming/matlab/
http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php
http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php
http://www.halvorsen.blog/documents/video/matlab_basics_videos.php
http://www.halvorsen.blog/documents/teaching/courses/matlab.php

Table of Contents

P aCE e ii
Table of CoNteNtS. ... %
1 INtrodUCHION Lo e 1
2 SIMUIINK e 2
2.1 Start using SiMUIINK......coiiii e 2
2.1.1 BlocCk Librariesc.oeiiiii e 4
2.1.2 Create @a new Model......ciiiiiiiiiii i 6

2.2 WiriNg teChNIQUES ..ot e aee e 7
720G T o 1= 1o AV AT o o [0 1 8
2.4 CoNfigUration .o i e 10
2.5 EXAMPIES .t e 11
Task 1: Simulation in Simulink — Bacteria Population................... 20

2.6 Data-driven Modellingcooiiiiiiiii i 21
2.6.1 Using the Command WindOW........ccvviiiiiiiiiii i e s 21
2.6.2 UsiNg @ M-file i e 24
2.6.3 Simulation Commandsccvivviiiiiiii 25
Task 2: Mass-Spring-Damper System.....cccovviiiiiiiiiie i e 26

Task 3: Simulink Simulation ... 29

3 Debugging in MATLAB ..ottt e ae e riaeaaaeaanneaas 30
3.1 The Debugging ProCesscccviiiiiiiiiiiii i i i e e 32
Task 4: Debugging...ccoiiiiiiiii e 33

4 More about FUNCLIONS ..ouviiiii i e 35

Vi Table of Contents

4.1 Getting the Input and Output Arguments.........cocoviiiiiiiiinnnns 35
Task 5: Create @ FUNCLiONcooiviiiiiii e 36

Task 6: Optional Inputs: Using nargin and nargchk 37

Task 7: Optional Outputs: Using nargout and nargoutchk 38

5 More about PlotS ..o 39
5.1 LaTEX or TEX ComMmMandsS....coouiiiiiiiiiiiiiiii i irissieesnessaneesness 39
Task 8: LATEX COMMANAS ...ueiiiiiiiiiiiii i riee s e saeseanesaeans 40

TASK 9: 3D PlOt. . e 40

6 Using Cells in the MATLAB EditOr.....ccoviiiiiiiiiiiii i e 42
Task 10: USIiNG CellS. i i i e e aee e 43

7 Importing Data ...ovviiiiiiii e 44
Task 11: Import Data....cccvviiii i s e e eee s 46

8 Structures and Cell Array s ..ooiiiii i i i e i 47
S A Ol B [{1 == 47
Task 12: USIiNG StrUCtUIES ..o neeeas 48

9 Alternatives t0 MATLAB ... e 49
0.1 OCtAVE it 49
9.2 Scilab @nd SCICOS .. uviiiiiiiii i 49
9.3 LabVIEW MathScript....ccoviiiii i i e 50
9.3.1 How do you start using MathScript?........cccoiiiiiiiiiiiiiiiiinns 51
0.3.2 FUNCHIONS e e e a e 52
9.3.3 ODE Solvers in MathScript.......oooiiiiiiii e 53
9.4 LabVIEW .. e s 54
9.4.1 The LabVIEW Environmentcooiiiiiiiiiiiiiie e 54
9.4.2 Front Panel ..o 55

1 I TN = 1o Yol 1Q B 1 =T | =1 o o 1A 58

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

vii Table of Contents
9.4.4 LabVIEW Control Design and Simulation Module................. 59

9.5 Mathematics in LAbVIEWooviiiiiiiiiiiii e 63
9.5.1 BasicMath ..o 64
9.5.2 Linear Algebra ..o 65
9.5.3 CUurve Fitting..ccooviiiiiii i 66
9.5.4 Interpolation ..o e 67
9.5.5 Integration and Differentiationccoviiiiiiiiiii i 67
0.5.6 StaliStiCS..cuviiiiiiii e 68
9.5.7 Optimization ... e 68
9.5.8 Differential Equations (ODES) ...cvvviiiiiiiiiiiiiiie i eiaen 69
9.5.9 Polynomials ... e 69

9.6 MATLAB Integration (MATLAB Script) in LabVIEWccvvteee. 70
0.7 PYENON i e 71
Appendix A — MathScript FUNCLIONScviiiii e 73
Appendix B: Mathematics characters........coooeviiiiiiii i e 75

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

1 Introduction

Additional Resources, Videos, etc. are available from:

http://www.halvorsen.blog/documents/programming/matlab

Part 3: Advanced Topics, Simulink and other Tools consists of the
following topics:

e Introduction to Simulink
e Advanced Topics in MATLAB:
Debugging in MATLAB
More about functions
More about Plots
Using Cells in the MATLAB Editor
Importing Data
o Structures and Cell Arrays
e Alternatives to MATLAB

o O O O

http://www.halvorsen.blog/documents/programming/matlab

2 Simulink

Simulink is an environment for simulation and model-based design for
dynamic and embedded systems. It provides an interactive graphical
environment and a customizable set of block libraries that let you design,
simulate, implement, and test a variety of time-varying systems, including
communications, controls, signal processing, video processing, and image
processing.

Simulink offers:

e A quick way of developing your model in contrast to text based-
programming language such as e.g., C.

e Simulink has integrated solvers. In text based-programming
language such as e.g., C you need to write your own solver.

Graphical Programming: In Simulink you program in a graphical way.
LabVIEW is another programming language where you use graphical
programming instead of text-based programming. LabVIEW is developed
by National Instruments. You will use LabVIEW in a later chapter

@ Before you start, you should watch the following videos:

e “"Simulink Overview”
¢ “Getting Started with Simulink”

The videos are available from:
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php

2.1 Start using Simulink

You start Simulink from the MATLAB IDE:

Open MATLAB and select the Simulink icon in the Toolbar:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php

Simulink

} MATLAB 7.4.0 (R2007a)

EBX)

File Edit Debug Deskiop Wind Start Simulink
D @ o o (% epyTR S[mji

Shorteuts (7] Howto Add (] what

Current Directory '+ O 2 % Command History Command Window BB Workspace HOoex
o @B - Q) To get started, select MATLAB Help or Cemos from the Help menu. x| & o g8 [vl:l >
AllFiles « Type See | Date Mod Mame ~ Vel
‘_]hﬂsﬂlulmﬂm h-file 1KE 15.10.08 This iz & Classroom License for instructionsl use only.

:_ISI’WP‘E m Iit-file 1 KB 22.10.09 Pesearch and commercial use is prohibited.

._‘ITESU”" I-ile TKB 1510.09 | 577; jdded paths for Simulation Interface Toolkit Versien 2008

‘JTES‘C““‘" I-file 1KB 151009 | 50 oreing the SIT Server on port 6011

£ TestFarLoap.m I-file TKB 151009 || 517 Serwer started

] TestLU.m -file 1KB 15.10.09 o

] TestWhile.m -file 1KB 15.10.09

< | > < >
4\ Start] Ready

Or type “simulink” in the Command window, like this:

Command Window g A x

o To gek started, select MATLAE Help or Dermos From the Help menu, x

Thiz iz a Classroom License
Research and commercial use
3IT: Added paths for 3imulation
Starting the 3IT Serwver on port

3 EIHI!E! gtarted

for instructional use only.

is prohibited.

Interface Toolkit Wersion Z009
6011

Then the following window appears (Simulink Library Browser):

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

4 Simulink

=1 simulink Library Browser,
File Edit WYiew Help

O 42 dh |

Commonly Used Blocks: simulink/Commanly
Used Blocks

= W Simulink commoriz
QI Comrmanly Used Elocks uz=d blocks

y Continuous
#+ Discontinuities Continuous
&I Discrete
y Logic and Bit Operations

#+ Lookup Tables
2| Math Operations
Model Yerification

Commonly Used Blocks

Dizcontinuities

rib;

Discrete

[+

2 Model-wide Uikt =

meE : thes ?? == Logic and Bit Dperations

_| Ports & Subsystems =

signal Attributes

2] signal Routing y=fiu} | Lookup Tables

B

] sinks +

y Sources L tath Operations

2+ User-Defined Functions
+. 2| Additional Math & Discrete % Madel Verification
B Control System Toolbox

B Data Acquisition Toolbax
+- W@ Fuzzy Logic Toolbox
B Model Predictive Control Toolbos IL F

W) NISIT Blocks %G Parts & Subsystems
B heural Metwork Toolbo

Misc Modelwide Utilities

[+

)

[
+- N Real-Time Workshop E:‘_ Signal Attributes
+-- W Simulink Control Design
+ W@l Simulink Extras ‘E Signal Routing
+ E_l Simulink. Response Optimization

W stateflow Y s
+ El Swskem Identification Toolbox il
+ E_l Wirtual Reality Toolbox ‘31{: S ouces

[+

Uger-Defined Functions

=
Additional Math & Discrete

Ready

The Simulink Library Browser is the library where you find all the
blocks you may use in Simulink. Simulink software includes an extensive
library of functions commonly used in modeling a system. These include:

e Continuous and discrete dynamics blocks, such as Integration,
Transfer functions, Transport Delay, etc.

e Math blocks, such as Sum, Product, Add, etc

e Sources, such as Ramp, Random Generator, Step, etc

2.1.1 Block Libraries

Here are the most used “"Continuous” Blocks:

1
z Integrator

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

Simulink

= fectBu
4= CxtDU State-Space

Tranzfer Fon

E%Z Tranzport Dielay

Here are some commonly used "Math Operations” Blocks:

Add
> Gain
* Product

@ Sum

Here are some commonly used “Signal Routing” Blocks:

Here are some commonly used “Sinks” Blocks:

]

Scope

=7 Graph

Here are some commonly used “Sources” Blocks:

Step

ooon .
o Signal Generator

_/ Ramp

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

6 Simulink

M R andorn Munber

1 Conztant

In addition, there are lots of block in different Toolboxes:

¥ Additional Math & Discrete

Conkrol System Toolbox

W Data Acquisition Toolbo:x

W Fuzzy Lagic Toolho

W Model Predictive Control Toolbox

W& NI SIT Blocks

+- W Meural Metwork Toolbos

+- W] Real-Time Waorkshop

+- Bl Simulink Control Design

+-- Wl Sirulink Extras

+ EJ Simulink, Response Optimization
W statefiow

+-- W System Identification Toolbox

+-- gl wirtual Reality Toolbox

+

2.1.2 Create a new Model

Click the New icon on the Toolbar in order to create a new Simulink
model:

[=1 Simulink Library Browser,
File Edit Miew Help

Fu_mﬁ|

ression for zeros. Yector expressiar
Create a nev model |, ar one i zeros is a vector.

The following window appears:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

7 Simulink

=1 untitled g@

File Edit Wiew Simulation Format Tools Help

= =] 10.0 MNamal «|| 55§

JReady 100%: oded5

You may now drag the blocks you want to use from the Simulink Library
Browser to the model surface (or right-click on a block and select “Add
to..."”).

Example:

In this example we place (drag and drop) to blocks, a Sine Wave and a
Scope, on the model surface:

=1 untitled *

File Edit Miew Simulation Format Tools Help
O =S e ¥ 3 |'|D.EI |N|:urmal j
h] L]
W
Sine Wave Scope
Ready 100%: ode45

2.2 Wiring techniques

Use the mouse to wire the inputs and outputs of the different blocks.
Inputs are located on the left side of the blocks, while outputs are located
on the right side of the blocks.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

8 Simulink

1

Integratard

1% Output

Constantd

When holding the mouse over an input or an output the mouse changes to
the following symbol.

‘H_

Use the mouse, while holding the left button down, to drag wires from the
input to the output.

Automatic Block Connection:

Another wiring technique is to select the source block, then hold down the
Ctrl key while left-clicking on the destination block.

Try the different techniques on the example above.
Connection from a wire to another block

If wire a connection from a wire to another block, like the example below,
you need to hold down the Ctrl key while left-clicking on the wire and
then to the input of the desired block.

T = o L
¥ g ¥
Sine Wave Scnpe Sine Wawve Scnpe
—T
I N

Scope Scoped

2.3 Help Window

To see detailed information about the different blocks, use the built-in
Help system.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

Simulink

=] Function Block Parameters: Integrator

[ntegrataor

Continuoug-time integration of the input signal.

FParameters

Esternal reset: |r‘||:|r‘|E

|nitial condition zource: |internal

|nitial conditian:

0

[] Limit output

|lpper saturation limit:

lirf

Lowwer saturation limit:

|-irf

[] Show saturation port
[] Show state port

Abzolute tolerance:

|aut|:|

[1 lgnore limit and reset when linearizing
Enable zero crossing detection

State Mame: [e.0., 'pogition’]

k. H Cancel ﬂ Help) Apply

All standard blocks in Simulink have detailed Help. Click the Help button in
the Block Parameter window for the specific block to get detailed help for

that block.

The Help Window then appears with detailed information about the
selected block:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

10 Simulink

File Edit Wiew Go Favorites Deskbop ‘window Help ~

Help Navigator X | dmup 22| S| b

Search for, | | Tt | Inkeqratar :: Blocks (Simulink] v
Example: "plok bools” OR plot* kaols -~

Simulink E‘ li‘

Contents ‘Index Search Results | Demos

& & Simulink || Integrator 3
- @ Getting Started Integrate signal
5 Examplas

Howe Sirmulink Warks Library
Simulink Basics
- Creating a Model
& [B) Working with Blocks Desc[iption
Waorking with Signals
Using Composite Signals
Warking with Data
Working with Lookup Tables The Integrator block outputs the integral of its input at the current time step. The following eguation
Madeling with Simulink represents the output of the block y as a function of its input u and an initial condition o, where y and u
Exploring, Searching, and Browsing Mod are vector functions of the current simulation time ©

Running Simulations .
Analyzing Sirmulation Results Y& = J uit)dt + yp
#-[B Creating Block Masks fo
=3 @ Simulink Debugger —1 | Simulink can use a number of different numerical integration methods to compute the Integrator block's
Simulink Accelerator output, each with advantages in particular applications. The Solver pane of the Configuration
Customizing the Simulink User Interface parameters dialog box {see The Solver Pane) allows you to select the technigue best suited to your
Using the Embedded MATLAB Function application

PrintFrame Editor

Continuous

Simulink treats the Integrator block as a dynamic system with one state, its output. The Integrator
block's input is the state's time derivative

x =yt
Yo = Yo
N . X = ulf)
Logic and Bit Operations
Lookup Tables The currently selected solver computes the output of the Integrator block at the current time step, using
Math Cperations + | the current input value and the value of the state at the previous time step. To support this computational
ar s || model, the Integrator block saves its output at the current time step for use by the solver to compute its ¥

2.4 Configuration

There are lots of parameters you may want to configure regarding your
simulation. Select “"Configuration Parameters...” in the Simulation menu.

e Edit “iew mm Format Tools Help

| 3 Eé Skark Chrl+T

(

Configuration Parameters. ..

v Mormal
External

The following window appears:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

11 Simulink

#4 Configuration Parameters: Example2/Configuration (Active)

Select: Simulation time
- Salver - .
Start time: Stop time:|10.0
- Dlata | mport /E xport E | B | |
- Dptimization Solver options
[=]- Diagrostics
- Sample Time Type: |Variable-step “ | Salver |0de45 [Dormand-Prince) v|
- D ata Validity _ Max step size: |aut0 |Helative tolerance: |'I e |
-~ Tupe Co_m.fersmn hin step size: |aut0 |Absolute tolerance: |auto |
- Connectivity o .
- Compatibility Initial step size: auta
- b odel Referencing Zero crozsing control: | Uze local settings w
- Hardwars Implementatlon [] Automatically handle data ransfers between tasks
- bodel Referencing
=-Real-Time wrkshop Salver diagnostic contralz
- Comments . . o]
- Symbols Mumber of consecutive min step size violations allowed: |1
. Cuztom Code Conzecutive zero crossings relative tolerance: 1071 28%eps
- Diebug Mumber of congecutive zero crozzings allowed: 1000
- [nterface
I ak l [Cancel] [Help Apply

Here you set important parameters such as:

e Start and Stop time for the simulation
e What kind of Solver to be used (ode45, ode23 etc.)
e Fixed-step/Variable-step

Note! Each of the controls on the Configuration Parameters dialog box
corresponds to a configuration parameter that you can set via the “sim
and “simset” commands. You will learn more about these commands
later.

”

Solvers are numerical integration algorithms that compute the system
dynamics over time using information contained in the model. Simulink
provides solvers to support the simulation of a broad range of systems,
including continuous-time (analog), discrete-time (digital), hybrid (mixed-
signal), and multirate systems of any size.

2.5 Examples

Below we will go through some examples in order to illustrate how to
create block diagrams and related functionality.

Example:

Integrator with initial value

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

12 Simulink

Create the following model (an integrator) and run the simulation:

= Integrator E|[E|E|
File Edit ‘iew Simulation Format Tools Help
== = L] 2 |1EI.D |N|:|rmal ﬂ

-
1
L
J_WS =]
1 Integratar Scoped

Constant

Ready 100%: ode45

Step1l: Place the blocks on the model surface

This example uses the following blocks:

1
z Integrator
1 Constant
[Scope

Step 2: Configuration

1
z [mtegratar

Double-click on the Integrator block. The Parameter window for the
Integrator block appears:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

13 Simulink

{=] Function Block Parameters: Integrator [‘S_c\
Integratar

Continuous-time integration of the input signal

Parameters

External reset | none b

Initial condition source: |ZETE

[Limit output
Upper saturation limit:
[in |

Lower saturation limit:
[|

[Show saturation part
[Show state part
Absolute tolerance:
|aut0

[] Ianore limit and reset when linearizing
Enable zero crossing detection

State Mame: [e.g.. 'position’]

[QK H Cancel][Help][Apply]

Select “Initial condition source=external”. The Integrator block now
looks like this:

1
E

e

1 Constant

Double-click on the Constant block. The Parameter window for the
Constant block appears:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

14

Simulink

E! Source Block Parameters: Constant

—_—

Congtant

Output the constant specified by the 'Constant value' parameter. [F 'Constant value' iz
a vectar and Interpret vector parameters az 1-0° ig on, treat the constant value az a
1-0 array. Othenwize, autput a matrix with the zame dimenzions as the constant
value.

T | Sigrnal Data Types

’E;r;_tant vaILE\

/ |

|nterpret vector parameters az 1-0

Sampling mode:; |Sample bazed |

Sample time:

lif |

[ak. H Cancel][Help

]

In the Constant value field we type in the initial value for the integrator,
e.g., type the value 1.

Step 3: Wiring

Use the mouse to wire the inputs and outputs of the different blocks.

Constanti

Inputs

i Output

1
=

Integratar

-

When holding the mouse over an input or an output the mouse change to
the following symbol.

‘k_

Draw a wire between the output on the Constant block to the lower input
in the Integrator block, like this:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

15 Simulink

1

— ——H:)-:"ﬁ:-; 2

] J Integratar

Constanti

You could also do like this:

J 'Automatic Block Connection Tip Ej@]fil

To quickly connect blockz, select the source block[s), then hold
davn the Chl key while left-chcking on the destination block.

|:| Do not show this message again

Help] [Close

Wire the rest of the blocks together and you will get the following
diagram:

I

J_ﬂg [
Integrator

q d Seoped

Constant

Step 4: Simulation

Start the simulation by clicking the “Start Simulation” icon in the Toolbar:

=W
pN

Step 5: The Results

Double-click in the Scope block in order to see the simulated result:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

16 Simulink
o (=13
S8 LPRAL ABEBE 8 %
_._1_
Time offset: 0O
Example:
Sine Wave

Create the block diagram as shown below:

EJ Example |.__| |E| EI
File Edit Wwiew Simulation Format Tools Help
O =& L 3 10.0
[1]
-
¥ ¥ =
Sine Miave Integratar Scope
Reads |100%% odeds

Set the following parameter for the Integrator block:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

17 Simulink

3] Function Block Parameters: Integrator rg
Integrator

Caontinuous-time integration of the input signal.

Parameters

Iritial condition sourcs: intemal v|
1<) |

[Utotpt

Upper saturation limit:
[inf |
Lower zaturation limit:
[|

] Shiow saturation part
] Shiow state port

Abszolute tolerance:

|aut0

] Ignore limit and reset when linearizing
Enable zera crozsing detection

State Mame: [2.g., ‘position’)

[kK H Cancel ” Help Apply

The result should be like this:

Example:

Using vectors

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

18

Simulink

Create the following block diagram:

ﬁU » I >|K— >

Sine Wave Integratar Fain Saturation Scope

For the Gain block, type the following parameters:

E! Function Block Parameters: Gain

EET

Element-wize gain [y = K. *u] or matrix gain [» = £ or y = k]

M ain | Signal Data Types | FParameter Data Tepes

LT ain:

AR

Mulbiphcation: |Element-wi$e[K."u]

S ample time [-1 for inherited]:

-

[k. ” Canicel H Help

] Apply

As you see, we can use standard MATLAB syntax to create a vector.

If you want to see the signal dimensions, select “"Signal Dimensions” and

“Wide Nonscalar Lines” as shown here:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

19

Simulink

kion Tools Help

. B2 Font... |1 0o |N|:urmal ﬂ
Flip Name
Flip Block, Chrl+I
Rokake Block, Ckrl+R,

T | Hide Mame u

Q{ Show Drop Shadov >

— |

e n Saturation
Foreground Colar »
Background Colar »
Screen Color »
Port/Signal Displays Sample Time Colors
Block, Displays ¥ | v Linearization Indicators
Library Link Display » Paort Daka Types

ignal Dimensions

Starage Class
100% w Testpoint Indicators
v Wigwer Indicators

Wide Monscalar Lines r

The block diagram should now look like this:

pd

1 5 3
ﬁU » T >B - |l
Sine Wiave Integrator zaln Saturation 5

\

ope

The thick lines indicate vectors, while the number (8) is the size of the

vector.

Let's change the Saturation block:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

20

Simulink

E! Function Block Parameters: Saturation

S aturation

Lirnit input zignal to the upper and lower zaturation values.

FParameters

U~

rand(3110 N\
Lower limit; J
and815-10 /

\Tm‘/m when linearizing

Enable zero crozsing detection

Sample time [-1 for inkernted]:

-1

I] H Cancel][Help

As you see you may use standard MATLAB functions and syntax.

Run the simulation and see the results in the Scope block.

Task 1: Simulation in Simulink - Bacteria Population

In this task we will simulate a simple model of a bacteria population in a

jar (known from a previous task).
The model is as follows:
birth rate = bx

death rate = px?

Then the total rate of change of bacteria population is:

X = bx — px?

Set b=1/hour and p=0.5 bacteria-hour

We will simulate the number of bacteria in the jar after 1 hour, assuming

that initially there are 100 bacteria present.

Procedure:

1. Create the block diagram for the system using “pen & paper”

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

21

Simulink

[6V)

6.

7.

. Start Simulink and create a New Model

Drag in the necessary blocks from the Simulink Library Browser
Configure the different blocks (double-click/right-click depending
on what you need). Some blocks need to be “flipped” (Right-click —
Format — Flip Block), while in other blocks you need to set a value
(double-click)

Draw lines between the different blocks using the mouse

Set Simulation Settings (Simulation — Configuration Parameters).
The simulation Time (Stop Time) should be set to 1 (hour)

Use a Scope to see the Simulated Result

You will need the following blocks:

1
£

Integrator block " To solve the differential equation. Note!

Initial value xo=100

Two Gain blocks {>} For p (=0.5) and b (=1)

%k
Product block To compute x2

Sum block @ Note! One plus (+) must be changed to minus (-)

]
Scope block To show the simulated result. Note! Set to

Autoscale

[End of Task]

2.6 Data-driven Modelling

You may use Simulink together with MATLAB to specify data and
parameters to your Simulink model. You may specify commands in the
MATLAB Command Window or as commands in an m-file. This is called
data-driven modeling.

2.6.1 Using the Command window

Example:

Given the following system:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

22 Simulink

1 3 3
ﬁu e - ’\K' - =
Sine Wrave Integrator Fain Saturation
g
Lal
Zero-Order Scope
Hald
."J_LI_
Zero-Order
Holdq

Note! In order to get 3 inputs on the Scope block:

Double-click on the Scope and select the Parameters icon in the Toolbar:

Then select Number of Axes=3:

) 'Scope’ parameters E|E|®
eneral || Data history | Tig: try right clicking on axes

LR

Mumber of axes: F | floating scope

Titve range: |aut.:. |

Tick lakels: |t:u:¢t|:|m axis only v|

Sampling

|Dec:ima‘tin:nn w | |1 |

[o | [concet | [0 | [oov |

Configure the zero-order hold blocks like this:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

23

Simulink

3] Function Block Parameters: Zero-Order Hold
Zero-Order Hold
Zera-arder hold.

Parameters

Sample time [-1 for inherited]:

X

(] ” Cancel][Help

Apply

E: Function Block Parameters: fero-Order Hold1
Zero-Order Hold
Zero-order hold.

Farameters

Sample time [-1 for inhented):

Ts2

| ok Help

l [Cancel l [

]

Apply

Write the following in the Command window in MATLAB:

Command Window =0 8 @

o To get started, select MATLAR Help or Demos From the Help menu.

x

> T=zl=0.2

T=1l =

0.2000

x> TsZ=0.5

Ts2 =

0.5000

e

Run the Simulink model from the Simulink:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

24 Simulink

Time offzset: 0

2.6.2 Using a m-file

It is good practice to build your model in Simulink and configure and run
the simulation from a MATLAB m-file.

A Typical m-file could look like this:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

25 Simulink

& Editor - M:\Work\Training\MATLABYAn Introduction to Simulink\Code\Mass-Spring-Dam. .. |._||E|r5__(|
File Edit Text Go Cell Tools Debug Desktop “Window Help oA
Nl | i@ o |G Hhesdf | Q0 BRE E@|[==
Z(*B2iB| -[ro [+ | #]11 |x |L2|0
1 33cript of mass-spring-damper simulator. =
2 %Hans-Petter Halwvorsen. 20.11.2009
3
4 4Modell Parameters
5= x_inic=4; %[w]. Initial position.
6 — dxdt_inic=0; s[mf=] . Initial Speed.
T - w=i0; % [kagl
8 — c=4; [N/ (w/s)]
9 - k=2:; %[N/ m]
10 = t_=tep F=50; %[=]
11 = F_0=0; 5[N]
12 — TF_1=4; %[HN]
13
14 (Simmlator Settings
15 — t_stop=100; 3[=]
16 = T_s=t_stop/1000; 3%[s]
17 = options=simset('solver', 'odes', 'fixedstep', T_=2):
15
19 33tarting simulation
20 — sim{'wass_spring dawper', t_stop, options):
script Ln 16 Col 22

You use the simset command to configure your simulation parameters
and the sim command to run the simulation.

The variables you refer to in the m-file is set in the Constant value field in
the Parameter window for each block.

E! Source Block Parameters: Constanti

Conztant

Output the constant gpecified by the 'Constant value' parameter. IF 'Constant value' iz
a vectar and '|nterpret vector parameters az 1-0° iz an, treat the constant value az a
1-0r array, Othenwize, output 3 matrix with the same dimensions az the congtant
value.

EET SiEnaI Data Types
l anztant value: \
|nterprel vector parameters as 1-D

Sarmpling mode: |5 ample based |

Sample time:
linf |

[ak. “ Cancel ” Help]

2.6.3 Simulation Commands

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

26 Simulink

The most used command is:

e simset
e Sim

Use these commands if you configure and run your Simulink model from a
m-file.

Example:

%$Simulator Settings

t stop=100; %[s]

T s=t stop/1000; %[s]

options=simset('solver', 'ode5',6 'fixedstep', T s);

%$Starting simulation
sim('mass spring damper', t stop, options);

[End of Example]

Task 2: Mass-Spring-Damper System

In this example we will create a mass-spring-damper model in Simulink
and configure and run the simulation from a MATLAB m-file.

In this exercise you will construct a simulation diagram that represents
the behavior of a dynamic system. You will simulate a spring-mass
damper system.

F(t) = cx(t) — kx(t) = m¥(t)

where t is the simulation time, F(t) is an external force applied to the
system, c is the damping constant of the spring, k is the stiffness of the
spring, m is a mass, and x(t) is the position of the mass. x is the first
derivative of the position, which equals the velocity of the mass. i is the
second derivative of the position, which equals the acceleration of the
mass.

The following figure shows this dynamic system.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

27 Simulink

The goal is to view the position x(t) of the mass m with respect to time t.
You can calculate the position by integrating the velocity of the mass. You
can calculate the velocity by integrating the acceleration of the mass. If
you know the force and mass, you can calculate this acceleration by using
Newton's Second Law of Motion, given by the following equation:

Force = Mass x Acceleration
Therefore,
Acceleration = Force / Mass

Substituting terms from the differential equation above yields the
following equation:

1
i=—(F—cx — kx)
m

You will construct a simulation diagram that iterates the following steps
over a period of time.

— Create the block diagram for the mass-spring-damper model above.

Instead of hard-coding the model parameters in the blocks you should
refer to them as variables set in an m-file.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

28

Simulink

3] Source Block Parameters: Constant

Conztant

Output the constant specified by the 'Constant walue' parameter. If 'Constant walug' is
a wector and Interpret vector parameters az 1-D'is on, treat the constant value az a
1-D arrap. Othenmize, output a matris with the zame dimenzions as the constant
walue.

Mai ignal D'ata Types
Conztant valua
(a=) |
Fiverpret vector parameters as 1-0

Sampling mu:u:le:|5ample bazed |

Sample time:
linf |

I 0k H Cancel H Help l

These variables should be configured:

e X init

e dxdt_init

e M=

) C=

e k

o t step_ F

e F O

e F_1
m-File

The following variables should then be set in the m-file:

X init=4; %[m

. Initial position.

]
dxdt init=0; $%$[m/s]. Initial Speed.

m=20;
c=4;
k=2;
st

t_
F O
F 1

5 [kg]
$ [N/ (m/s)]
% [N/m]
_F=50; %[s]
[N]
[N]

e}

o°

@
0;
4 -

14

o°

— Create the model of the system in Simulink, and then create a m-file
where you specify model and simulation parameters. Then use the sim
function in order to run the simulation within the m-file.

[End of Task]

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

29 Simulink

Task 3: Simulink Simulation

Given the autonomous system:
X =ax
1 . .
where a = - ,where T is the time constant

The solution for the differential equation is found to be:
x(t) = e%x,

Set T =5 and the initial condition x(0) = 1.

Simulate the system in Simulink where we plot the solution x(t) in the
time interval 0 <t <25

[End of Task]

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

3 Debugging in MATLAB

Debugging is about different techniques for finding bugs (errors that make
your code not work as expected) in your code.

In all but the simplest programs, you are likely to encounter some type of
unexpected behavior when you run the program for the first time.
Program defects can show up in the form of warning or error messages
displayed in the command window, programs that hang (never
terminate), inaccurate results, or some number of other symptoms.

It is difficult to write code without errors (bugs), but MATLAB have
powerful Debugging functionality, similar to other tools like, e.g., Visual
Studio.

Why we call it debugging? They found a bug (actually a moth) inside a
computer in 1947 that made the program not behaving as expected. This
was the “first” real bug which was debugged.

Step 1: Removing Warnings and Errors notified by MATLAB

The first step in order to avoid errors is to remove all warnings and errors
notifies by MATLAB in the Editor. On the right side of the Editor there will

be shown symbols to illustrate that MATLAB have found potential errors in
your code.

[J Warnings - Click the symbols to get more information about a
specific warning

Example:

30

31 Debugging in MATLAB

& Editor - M:WorlLab\Lab Work\Master\MATLAB Cour... [= |[B][X]
File Edit Text Go Cell Tools Debug Desktop Window Help L4

DEHE &+ BREo o & 4@ f 70O -
(B2 B -[to [+ | =[11 |x | @ \
1 function anglel = right triangle(x,y, type) -
2
3 — =switch tupe e 1: Input argument 'type' appears never ko be used.|
4 - case 'sin'
5|= anglebl=asin{x/v);
g - case 'cos' ;
7 - anglei=acos (x/7) ‘——— Warnlngs
g - case 'tan'
g|= anglei=atan (x/7):
10
1l - end
12 % Convert from radians to degrees
13 — anglel = rZdi(angled):;

L /

right_triangle Ln 13 Cal 1

M Errors - Click the — symbols to get more information about a specific
error

Example:

& Editor - M:\WorkiLab\Lab Work\Master\MATLAB Cour... [= |[B][X]
File Edit Text Go Cell Tools Debug Desktop ‘Window Help N AN

DwE iR~ & Aen 5, "0~
(B2 B - (10 [+ | #[t1 [x || @ \
1 function anglel = right triangle(x,y, tLype) [||
&
d= switch tupe -
4= case 'sin! e 3t Apparently an EMD is missing, possibly matching SWITCH.
5= anglei=asini(x/v):
6 - case 'ocos!
7= anglei=acos (x/7)
i - case 'tan'
&= angled=atan (x/v) ;
10
11
12 % Conwvert from radians to degrees
13 — angleB = ridiangleld):

right_triangle Ln 10 Col 1 E _/

— Take necessary actions in order to remove these Errors and Warnings!

Step 2: Using Debugging Tools and Techniques in the MATLAB
Editor

In addition MATLAB have more sophisticated debugging tools we will learn
more about below. These are tools you use when your program is running.

Below we see the basic debugging functionality in MATLAB:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

32 Debugging in MATLAB

Exit Debug Mode

& Editor - C:\Documents and Settings\bernt[\Wiy ... E]@

File Edit Text Cell Tools Debug Desktop Window Hglp R
Dl ‘taBo~ & AF|B8R G|3"’(31E1§3|h0rizon1 v |Hwv
AHllE,

2 |*BLBiB| - (10 |+ | +]|1.1 | x|| % %%

1 function xh = horizonl (h,d)
20slkh = sqrt(h.*(h+d)]);

horizon1 Ln 2 \ Col 1

Breakpoint: set/remove by clicking Step execution

in breakpoint column of line

Debugger Tools

The MATLAB Debugger enables you to examine the inner workings of your
program while you run it. You can stop the execution of your program at
any point and then continue from that point, stepping through the code
line by line and examining the results of each operation performed. You
have the choice of operating the debugger from the Editor window that
displays your program, from the MATLAB command line, or both.

3.1 The Debugging Process

You can step through the program right from the start if you want. For
longer programs, you will probably save time by stopping the program
somewhere in the middle and stepping through from there. You can do
this by approximating where the program code breaks and setting a
stopping point (or breakpoint) at that line. Once a breakpoint has been
set, start your program. The MATLAB Editor/Debugger window will show a
green arrow pointing to the next line to execute. From this point, you can
examine any values passed into the program, or the results of each
operation performed. You can step through the program line by line to see
which path is taken and why. You can step into any functions that your
program calls, or choose to step over them and just see the end results.
You can also modify the values assigned to a variable and see how that
affects the outcome.

When the program is in debug-mode, the command prompt is changed to
“K>>" and the following message appears in the status bar:

|[A Start] Stopped in debugger |

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

33 Debugging in MATLAB

Your code could look something like this:

1 - elear, cleo

2 — w=5;

3— forn = 1l:m

4 Qe rin] = rank(magicin))
55— end

&

@ A red circle indicates that you have set a breakpoint, which means

your program will stop at this place in your code and wait for further
instructions from you.

: The green arrow indicates at what line your program is at the
moment.

Now you can use the “debugging toolbar” to step through your code:

£k 3 EIEE
The “debugging toolbar” contains the following buttons:
& Set/Clear Breakpoint
] Clear all Breakpoints
Ll Step through the program, line by line
B Step in (to a function, etc.)
El Step out (of a function, etc.)

12 Continue

L8 Exit Debug mode

Task 4: Debugging

Create a similar program like this:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

34 Debugging in MATLAB

B Editor - C:\Memp\MATLAB\TestForLoop.m

File Edit Text &Go Cel Tools Debug Desktop Window Help A M

NEE {RRo o S dad f 88 AR EEHE reroor v [0 v
=4 +E [;% J'% B v = b %%; %95 ﬂv Continue

1l - w=5; =
2— forn = 1:m

3 .¢| rin) = rank(mwagicin))

4 - end

5

angled.m = | TestForLoop.m

scripk Ln 3 Col 1

Set a Breakpoint inside the loop and use the Debugging functionality to
step through the program and watch the result in each iteration.

B Editor - C:\temp\MATLAB\TestForLoop.m |Z||E|E|
File Edit Text Go Cell Tools Debug Desktop Window—ssls A M

NEE| i mRo (S heasf (B8 AR B |t v (O]
T BB B -[10 |+ | [x| HEG

1 — mw=5; N |
Z2— forn = 1l:im

3 .lb| rin) = rank(magicin))

4 — end

n: 1xl double =

; - ‘\ Hold the mouse over

the variables to se the
current value

anglef.m x| TestForLoop.m ><|

scripk lm 3 Col 1

Test all the different buttons in the “debugging toolbar”:
€k B R EE 6

In addition you should open some of your previous programs you have
made, and try the debugging tools on them.

[End of Task]

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

4 More about Functions

4.1
Arguments

Getting the Input and Output

A function may have several inputs and several outputs. Use nargin and
nargout to determine the number of input and output arguments in a
particular function call. Use nargchk and nargoutchk to verify that your
function is called with the required number of input and output

arguments.

Example:

We create the following function:

function [x,y] = myfunc(a,b,c,d)
disp (nargchk(2,4,nargin)) $ Allow 2 to

Q

disp (nargoutchk (0,2, nargout)) % Allow 0 to

X =

+ b;
y =a*b

4

a
a

if nargin ==
Xx =a t+ b + c;

y =a*b *c;

end

if nargin == 4
x=a+ b+ c + d;
y =a*b*c*d;

end

inputs
2 outputs

We test the function in the Command window with different inputs and

outputs:
>> [x, y] = myfunc(l,2)
x =
3
y =
2

35

More about Functions

36
>> [x, y] = myfunc(l,2,3)
x =
6
y =
6
>> [x, y] = myfunc(1l,2,3,4)
x =
10
y =
24
>> [x] = myfunc(l,2)
x =
3
>> [x, y, z] = myfunc(l,2)
??? Error using ==> myfunc

Too many output arguments.

>> myfunc (1, 2)
ans =

3
>>

Note! In newer versions of MATLAB, the error function is recommended

instead of the disp function, but both should work.

[End of Example]

Task 5: Create a Function

You may have experienced standing on top of a hill or mountain, and it
feels you can see everything. How far can you really see? It depends on
the height of the mountain and the radius of the earth, as shown in the

sketch below.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

37 More about Functions

In this task we will create a function that finds the distance to the
horizon x;,.

You may use the Pythagorean law to find xj:

R? = x? = (R+ h)?> © x;, = h(2R + h)

D is the diameter of the earth, R is the radius of the earth, h is your
height above the earth, where you are standing on a mountain. The radius
on the earth is R = 6378km.

— Create a function that finds xh from input parameter h,
>>xh=horizon (h)
How far can you see if you are on top of the Mount Everest?

Make sure the function may handle vector inputs and create a help text
for the function that describes what the function is doing.

— Create a script where you use the function to plot h vs. xh where h is a
vector from 1 to 8000 meters. Create labels, title and a legend in the plot.

[End of Task]

Task 6: Optional Inputs: Using nargin and nargchk

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

38 More about Functions

The distance to the horizon is quite different on the moon than on the
earth because the radius is different for each.

— Extend your function so that R could be an optional input to the
function, e.qg.:

>>xh=horizon (h, R)
If xh=horizon (h)is used, R is assumed to be R=6378km (the earth).

— Use nargin to solve the problem. Use also nargchk to validate the
number of inputs.

How far could you see if the moon had a mountain similar to Mount
Everest? The radius on the moon is R = 1737km.

[End of Task]

Task 7: Optional Outputs: Using nargout and
nargoutchk

Let say we also may want to find the angle (a) between radius to the
horizon and the observer (you are standing on top of the mountain). See
the illustration above.

— Extend your function so that the angle a could be an optional
output from the function, e.qg.:

>>[xh,a]=horizon (h,R)
If xh=horizon (h,R) is used, a should be ignhored (only xh is calculated).

— Use nargout to solve the problem. Use also nargoutchk to validate
the number of outputs.

The angle a is given by:

Xh Xh
tana = — © a = atan (—)
R R

Note! You have to convert from radians to degrees (2m = 360°). Use your
function r2d which you created in a previous task.

[End of Task]

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

5 More about Plots

MATLAB have advance Plot functionality. We have already used the plot
functionality in MATLAB in a dozen of examples. In this chapter we will
learn more about the advanced plotting functionality that MATLAB offers.

5.1 LaTEX or TEX Commands

When using labels, legends, and titles in a plot you sometimes want use
more advanced labels, titles, legend such as:

“Solution of fls sin(x) dx”
This is done by using LaTeX or TeX commands.

In LaTeX typesetting, mathematical expressions are bracketed by the $$
symbol. Using $ bracketing, indicates in-line math.

Example:

The MATLAB code:

legend ({'S\frac{-b \pm \sqgrt{b”{2}-4ac}}{2a}ss'},
'Interpreter', 'LaTeX')

title ({'Equation: $\frac{-b \pm \sqgrt{b”{2}-4ac}}{2a}$'},
'Interpreter', 'LaTeX')

gives the following plot:

Eepuation: =iEwbdac "';_""
(e}

b+ b2 Jae

39

40 More about Plots

[End of Example]

See Appendix B: Mathematics characters.

Task 8: LATEX Commands

Use MATLAB to create the following plot:

J Figure 1 El [El E|

File Edit View Insert Tools Desktop ‘Window Help

DEed& k RaO® € 0B 80

Plot of the sinus function, y=sin(t)

sinit)

3.':

[End of Task]

Task 9: 3D Plot

Use your xh=horizon (h,R) from a previous task to create a mesh plot
where you plot xh for different values of h and R respectively.

Tip! Call the function in nested For Loops for different values for h and R
respectively.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

41

More about Plots

[End of Task]

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

6 Using Cells in the
MATLAB Editor

You may structure MATLAB code in the editor by defining text cells. A text cell
is initiated by putting the symbol %%o (double % character) in the first
position of a line. The cell ends on the line preceding the next %% symbol.
After the %% symbol, a space should be inserted, followed by a
descriptive text. The MATLAB Editor marks a cell by framing it with a
yellow box: when you put the cursor in a cell, the frame is shown. In
order for this to work, the Cell Mode must have been Enabled, see the Caell
menu of the MATLAB editor.

Below we see an example:

= Editor - C:\Documents and Settings\berntl\My Documents\Archiv... [.7‘ (| &‘

File Edit Text Cell Tools Debug Desktop Window Help v oAx
Dl ‘B & &5 0D BRYER Stk BoAS& 0
g |-BiBiE| -[10]+ #[11 = |#

1 %% Initializing variables

2- n = 200;
3- N = zeros|(n,1):
4- s = N;

5 %% Computing the sum
6- for I = 1:n

7- N(I) = I;

8 - end

9- for I = 2:in;

10 - 8(I) = S(I-1) + 1/N{(1I)"2;
11 - end

script Ln 3 Col 10

42

43 Using Cells in the MATLAB Editor

The Cells Toolbar in the Editor:

E Editor - C:\Documents and Settings\berntl\My Documents\Archiv... D@@

File Edit Text Cell Tools Debug Desktop Window Help v A x
D@ shBoc & NAf B0 BARRN DA stack| boce | BOE &0
@ BB iB| -[10 [+] =11 [x |3

| Show cell titles |

Tools for using cells

Why Use Cells?

M-files often have a natural structure consisting of multiple sections.
Especially for larger files, you typically focus efforts on a single section at
a time, working with the code in just that section. Similarly, when
conveying information about your M-files to others, often you describe the
sections of the code. To facilitate these processes, use M-file cells, where
cell means a section of code. Specifically, MATLAB uses cells for Rapid
code iteration in the Editor/Debugger — this makes the experimental
phase of your work with M-file scripts easier.

Task 10: Using Cells

Use one of your previous scripts and divide your code into different cells.
Run the different Cells individually.

Use the Cells tools to browse between the different Cells in your script.

[End of Task]

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

/ Importing Data

It is often needed to import data into MATLAB for analysis and
calculations, it could be data in a spreadsheet or logged data from a DAQ
device that you want to analyze. MATLAB have powerful tools for both
importing and exporting data.

Given an Excel file:

| - m m
120 - (> f

A fil B C D E F
1 |a b cC d e
2 1 i 11 1a 21
3 2 7 12 17 22
4 3 & 13 18 23
5 4 9 14 19 24
b 5 10 15 20 25
7
s

To open the Import Wizard, use File — Import Data ...:

/ MATLAB 7.4.0 {R2007a)

-8 Edit Debug Desktop ‘Window Help

MEw v E ?

Cpen. .. Chrl+0

Set Path, ..
Preferences, .,

Or in newer versions of MATLAB:

6 06 MATLAB R2014a

1= R . New Variable Analyze Code [uT-] “n (‘% Community
l‘_ﬂ!‘ q:ll] E L] Find Files] 3 bﬁ S? ¥ (ma) E {0} Preferences Q) &
o i Open Variable v & Run and Time 3 Request Support
New New Open |1 Compare| Save - : Simulink Layout ﬁ Set Path Help
Script v v 1 rkspace @ Clear Workspace v [“) Clear Commands v Library v v 5'} Add-Ons v
FILE N VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES

44

45 Importing Data

A File dialog appears:

Import Data

Sok i |DData j £ E-

_2 Hoata.ds

Mine siste
dokumenter

Skrivebord

Min datamaskin

@

Mine
nettverk ssteder

Filnarer: j Apne |
Filtype: |F|ecognized [1ata Files j Aovbryt

Select, e.g., a Excel Spreadsheet File, and the Import Wizard appears:

Import Wizard |:||§|f'5__<|

Select variables to import using checkboxes

(%) Create variables matching preview,
(") Create vectors from each column using column names.

Create vectors from each row using row names,

‘Wariables in M \WworkiLabiLab Work\MATLAE LablSolutions\DataiData, xls

Irnpart Mame - Size Bytes Class 1 2 3 4
[[Ycohead... 1x5 310 cell ; ; ? i; i?
ata
[S5[data SR 200 double || 5 5 i3 s
[Htextdata 1x3 30 el ([4 5 14 19
5 5 10 15 z0
4 | > < | >

Clicking Finish and the data from the Excel file will be available in
MATLAB:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

Importing Data

46
12
19 1 Ex> who
1oC
19 1| Tour wvarisbles are:
101
101 colheaders data
151
Er» data
data =
1 f 11
2 7 1z
3 = 13
3 = 14
3 10 15
| e

1la
17
15
13
£0

textdata

21
22
23
24
£5

@ Before you start, you should watch the video "Importing Data from

Files”.

The video is available from:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3

.php

Task 11: Import Data

Create a spreadsheet file with some data (or use an existing spreadsheet
with data if you have) and import the data into MATLAB.

Plot the data in MATLAB.

[End of Task]

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php

8 Structures and Cell
Arrays

Historically, the matrix was the only data type in MATLAB. Vectors and
scalars are special cases of the general matrix. Now some new and
important data structures have arrived. One is the multi-dimensional
array, which just extends the matrix to more than two dimensions. More
important are the structure and the cell array.

In this chapter we will use these new data structures.

@ Before you start, you should watch the video “Introducing
Structures and Cell Arrays”

The video is available from:
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3

.php

8.1 Structures

A structure is a data structure that can hold diverse data types, not
necessarily numbers, and with named data containers called fields, similar to a
record with fields in a database.

Example:

>>tank.height = 0.4;
>>tank.diameter = 0.5;
>>tank.type = 'cylinder';
>>tank

tank = height: 0.4000
diameter: 0.5000
type: 'cylinder'

[End of Example]

47

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php

48 Error! Reference source not
found.

Task 12: Using Structures

Create a function that calculates the volume of different objects, such as a
cylinder, a sphere, etc.

Use Structures to solve the problem.

[End of Task]

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

O Alternatives to
MATLAB

Here are some other alternatives to MATLAB worth mention:

e Octave

e Scilab and Scicos

e LabVIEW MathScript
e LabVIEW

e Python

9.1 Octave

Octave is a free software tool for numerical analysis and visualization. The
function and command syntax are very similar to MATLAB. Many
contributed functions packages (like the toolboxes in MATLAB) are
available. They cover control theory, signal processing, simulation,
statistics etc. They are installed automatically when you install Octave.

There is no SIMULINK-like tool in Octave, but there are many simulation
functions (as in Control System Toolbox in MATLAB).

e Read more about Octave on their Homepage:
http://www.gnu.org/software/octave/

¢ Read more about Octave on Wikipedia:
http://en.wikipedia.org/wiki/GNU Octave

9.2 Scilab and Scicos

Scilab is a free scientific software package for numerical computations
providing a powerful open computing environment for engineering and
scientific applications.

49

http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/GNU_Octave

50 Alternatives to MATLAB

Scilab is an open-source software. Since 1994 it has been distributed
freely along with the source code via the Internet. It is currently used in
educational and industrial environments around the world.

Scilab is quite like MATLAB, and the range of functions are comparable.

Octave is more like MATLAB than to Scilab. One problem with Octave has
been that data plotting is more cumbersome in Octave than in Scilab.

One nice thing about Scilab is that you get Scicos automatically installed
when you install Scilab. Scicos is a block-diagram based simulation tool
like Simulink and LabVIEW Simulation Module.

e Read more about Scilab on their Homepage: http://www.scilab.org/
e Read more about Scilab on Wikipedia:
http://en.wikipedia.org/wiki/Scilab

9.3 LabVIEW MathScript

MathScript is a high-level, text- based programming language. MathScript
includes more than 800 built-in functions and the syntax is similar to
MATLAB. You may also create custom-made m-file like you do in MATLAB.

MathScript is an add-on module to LabVIEW but you don’t need to know
LabVIEW programming in order to use MathScript.

For more information about MathScript, please read the Tutorial “"LabVIEW
MathScript”.

MathScript is an add-on module to LabVIEW but you don’t need to know
LabVIEW programming in order to use MathScript.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

http://www.scilab.org/
http://en.wikipedia.org/wiki/Scilab
http://home.hit.no/~hansha/?tutorial=mathscript
http://home.hit.no/~hansha/?tutorial=mathscript

51 Alternatives to MATLAB

P OR Yo (peets Dok grdow |
YR b Wb W ey [
Fot delp, mtet “baly classes - Sep— - .
1 T3 Clanomeve »
Textual
Output
- Variables /
MathScript | | “seript!
. Yt
Window i ecioais
[History
Crmwnarsd wwsdine
Command 1
Window - -
TY) - e L Colon |

For more information about MathScript, please read the Tutorial “LabVIEW
MathScript”.

9.3.1 How do you start using
MathScript?

You need to install LabVIEW and the LabVIEW MathScript RT Module.
When necessary software is installed, start MathScript by open LabVIEW:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

http://home.hit.no/~hansha/?tutorial=mathscript
http://home.hit.no/~hansha/?tutorial=mathscript
http://home.hit.no/~hansha/documents/software/LabVIEW.htm
http://home.hit.no/~hansha/documents/software/LabVIEW%20MathScript%20RT%20Module.htm

52

Alternatives to MATLAB

> Getting Started

File

Operate Tools Help

& LabVIEW

New

&) Blank VI

e :

“lgd Empty Project
E@ Real-Time Project

9 More...

Open

@ C:\...\CDEx AirHeater lvproj
[EQ. M:4..\Student Information System.lvproj

=], ...le - Air Heater - Setpaint profile.vi
(g'}, M:4.. \MPC Example - Simple Model.vi
@. ...h Time Delay - Using State Machine.vi

l;z} ...le - Air Heater - Setpoint profile. vi
E) Browse...

Targets

lReaI-Time Praject

vl[Go]

Latest from ni.com
LabYIEW News {15)
LabVIEW in Action (15)
Example Programs (10)
Training Resources (13)

Online Support
Discussion Forums
Code Sharing
KnowledgeBase
Request Support

Help

Getting Started with LabYIEW

LabVIEW Help
List of All New Features

C\ Find Examples. ..

Q Find Instrument Drivers. .

In the Getting Started window, select Tools -> MathScript Window...:

+

i
5

W & L

File Qperate Help

Mew

Hal Ri=

Instrumentation

Measurement & Automation Explarer. ..

m L Real-Time Maodule
.

(MathScripk Window, .,

IMAC Vision

DSC Maodule

9.3.2 Functions

The figure below illustrates how to create

Latest from ni.com

1 aRWTFWY Bleiwe (15

and use functions in MathScript:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

53

Alternatives to MATLAB

B! LabVIEW MathScript

Mew Script Editor

Mew Project
Cpen Project...

Recent Projects
Recent Files

Exit

LabVIEW MathScript Properties Chrl+L

Save your function as a .m file
IHE Edit Wiew Operate Tools Window Help
hiew V1 ke I Var\alﬁ(z '5Cf|Dt | History
Mew, .. a
Open.., Ctrl+0 3 @ Al Co\tmpiMatheriptiadd.m |
Close ChrlH Function total = add (e,) 1
Close AIJ DUI'IIZ .IDI'I ol a = al e -~
t.r‘n thlifun[tllnn add 2 numbers L) Create your function in
Save Chrl+S okl =y g Wi W
the Script window
Save As...

Add Search Folder
for your Code

Saaech) for n Flos
CitmaiMachSriot

Add your folder where your
code is located here

Working derectory
oS v
The fiest dirachory in ehe Search pathis] For . ks st spefies the Wosking drectory.

WETE: Changes yuu make L the soarch patdh ki apply anky bo the LabIEW MathScript Windew,

Cammand Windaw

add(3,5]| (5)

(GaEnn
[Foldr] -

Test your function in the
Command window

v

EE

Line: 1, Column: 15

| 1dle

9.3.3 ODE Solvers in MathScript

MathScript also offers some ODE solvers, not as many as MATLAB and
other names, but the principle is quite the same.

Below we see a list with available ODE solvers:

ode (MathScript RT Module Class)

Requires: MathScript BT Module

Use members of the ode class to solve continuous ordinary differential equations.
Function Description

ode adames [Adams-Moulton ODE =clver

ode bdfiS |BDF ODE solver

ode bdf23 |BDF ODE =olver

ode radaus | Determines the v-values in an ODE system using the RADAL 5 ODE =solver
ode rl23 Runge-kutta 23 QDE solver

ode rkds Runge-kutta 45 ODE =olver

ode rosen |Rosenbrock ODE solver

odepset Getz or sets the parameters for an ODE =olver

Below we see the description for the ode_rk23 function:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

54 Alternatives to MATLAB

ode_rk23 (MathScript RT Module Function)

Owning Class: ocde

Requires: MathScript RT Module

Syntax

[t, ¥] = cde_rkZ3(fun, times, y0)

Legacy Name: zd=23

Description

Uses the Runge-Kutta 23 ODE solver to determine the y-values in an ODE system.
Details

Examples

Inputs

Name | Description

fun Specifies the name of the function that describes the ODE system. The function must have the following
form: funetion dy = funitimes, v).funis a string.

times | Specifies either the starting time and ending time for the time span, such as [0, 20], or the time points,
such as 1:20. times must be strictly monotonic and is a real, double-precision vector.

y0 Specifies the y-value at the starting time. y0 is a real, double-precision vecter.

Outputs

Name | Description

t Feturns the time values at which LabVvIEW evaluates the y-values. t iz a real, double-precision vector.
v Feturns the y-values that LabVIEW approximates. v is a real, double-precision matrix.

Details

If you specify the starting and ending time for the time span in times, Lab\VIEW automatically adjusts the time step
size throughout the calculation to ensure that the error per step remains at a given relative and absolute tolerance.
If you specify the time points in times, LabVIEW also automatically adjusts the time step size to ensure a more
accurate calculation. However, LabVIEW returns only the yv-values at the time points yvou =pecify, and t equals
times.

You can use the cdepset function to set the relative and absolute tolerance as well as other parameters the
MathScript ODE solver uses.

This function is not supported in the LabVIEW Bun-Time Engine. Do not use this function in a stand-alone application
or shared library.

Examples

% The lorenz function is defined by:

% function dy = lorenzi(times, ¥)

% dy

%

%

%

[[1; 1; 11}

9.4 LabVIEW

LabVIEW is a graphical programming language, and it is well suited for
Control and Simulation applications.

In this chapter we will use LabVIEW to create a block diagram model and
simulate it, similar to what we have done in Simulink.

9.4.1 The LabVIEW Environment

LabVIEW programs are called Virtual Instruments, or VIs, because their
appearance and operation imitate physical instruments, such as

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

55 Alternatives to MATLAB

oscilloscopes and multimeters. LabVIEW contains a comprehensive set of
tools for acquiring analyzing, displaying, and storing data, as well as tools
to help you troubleshoot your code.

When opening LabVIEW, you first come to the “Getting Started” window.

@ @ LabVIEW

Ed | abVIEW (

(

3 [

>/) Create Project (»)) Open. Existing
Recent Project Templates — All Recent Files v | i
Blank VI Step Response Example.vi
Air Heater Black Box Simulator.vi
Air Heater Black Box Model.vi
USB-6008 Test.vi e
USB-6008 Analog In.vi
Temperature Simulator.vi

| Temnerature vi L

». Find Drivers and Add-ons »+| Community and Support >/ Welcome to LabVIEW
Connect to devices and expand the ' Participate in the discussion - Learn to use LabVIEW and upgrade
functionality of LabVIEW. forums or request technica from previous versions.

support.

: J LabVIEW News | The Future of LabVIEW is Here...See it Now.

In order to create a new VI, select "Blank VI” or in order to create a new
LabVIEW project, select "Empty project”.

When you open a blank VI, an untitled front panel window appears. This
window displays the front panel and is one of the two LabVIEW windows
you use to build a VI. The other window contains the block diagram. The
sections below describe the front panel and the block diagram.

9.4.2 Front Panel

When you have created a new VI or selected an existing VI, the Front
Panel and the Block Diagram for that specific VI will appear.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

56 Alternatives to MATLAB

) Untitled 1 Front Panel *

File Edit Wwiew Project Operate Tools Window Help

M@ @ ||| 13pt Application Font hlh'@@”&l

o | Il T

In LabVIEW, you build a user interface, or front panel, with controls and
indicators. Controls are knobs, push buttons, dials, and other input
devices. Indicators are graphs, LEDs, and other displays.

You build the front panel with controls and indicators, which are the
interactive input and output terminals of the VI, respectively. Controls are
knobs, push buttons, dials, and other input devices. Indicators are graphs,
LEDs, and other displays. Controls simulate instrument input devices and
supply data to the block diagram of the VI. Indicators simulate instrument
output devices and display data the block diagram acquires or generates.

E.g., a "Numeric” can either be a "Numeric Control” or a "Numeric
Indicator”, as seen below.

i

iw

i FE] 123

eric Zantral Mumeric Indic. ..

I you select a "Numeric Control”, it can easy be changed to an “Numeric
Indicator” by right click on the object an select "Change to Indicator”

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

57 Alternatives to MATLAB

e ——
Zhange to Indicatar

Descripkion and Tip...

Create

Replace

[ata Operations
Advanced

Fit Control to Pane
Scale Objeck with Pane

Representation
Data Entry...
Display Farmat, ..

Properties

Or opposite, I you select a "Numeric Indicator”, it can easy be changed to
an “"Numeric Control” by right click on the object an select "Change to
Control”

Description and Tip...

Create

Replace

Data Operations
Advanced

Fit Control to Pane
Scale Objeck with Pane

Adapk To Source
Representation
Display Format, ..

Properties

The difference between a "Numeric Control” and a "Numeric Indicator” is
that for a "Numeric Control” you may enter a value, while the “"Numeric
Indicator” is read-only, i.e., you may only read the value, not change it.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

58 Alternatives to MATLAB

Input Caonkral

v 5
Cutpuk Indicakor

o et

The appearance is also slightly different, the "*Numeric Control” has an
increment and an decrement button in front, while the "Numeric Indicator”
has a darker background color in order to indicate that its read-only.

9.4.3 Block Diagram

After you build the user interface, you add code using VIs and structures
to control the front panel objects. The block diagram contains this code. In
some ways, the block diagram resembles a flowchart.

¥ Untitled 1 Block Diagram,*

File Edit “ew Project Operate Tools wWindow Help -
) I@I @IEI ||¢|;||E’|uj} | 13pk Application Fonk = ” ;J-T-"I|7I]:'I |‘§1TIE .\.;,-r
-

P L YN s

» &> oot
...................] o
w
< *

After you build the front panel, you add code using graphical
representations of functions to control the front panel objects. The block
diagram contains this graphical source code. Front panel objects appear as

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

59 Alternatives to MATLAB

terminals, on the block diagram. Block diagram objects include terminals,
subVIs, functions, constants, structures, and wires, which transfer data
among other block diagram objects.

9.4.4 LabVIEW Control Design and
Simulation Module

In this chapter we will focus on how to create and simulate a model using
the “Simulation Loop” and the corresponding blocks available in
LabVIEW.

Below we see the Simulation palette in LabVIEW with “Simulation Loop”
and the corresponding blocks available:

-

A I (), Search l 2 WiEw i

[

Control & Sim...
4 » g
Signal Genera... Signal Arithm... Graph Lkilities
> >
L]

Continuous Li,., Monlinear Sys,.. Discrete Line. ..

-

3 -'alﬁ

EE

LIkilities Trim & Linearize Lookup Tables

g »

[
A

Cpkimal Design Estimation

In the “Simulation” Sub palette we have the “"Control and Simulation
Loop” which is very useful in simulations:

1

You must place all Simulation functions within a Control & Simulation Loop
or in a simulation subsystem. You also can place simulation subsystems
within a Control & Simulation Loop or another simulation subsystem, or
you can place simulation subsystems on a block diagram outside a Control
& Simulation Loop or run the simulation subsystems as stand-alone VIs.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

60 Alternatives to MATLAB

Errar p

The Control & Simulation Loop has an Input Node (upper left corner) and
an Output Node (upper right corner). Use the Input Node to configure
simulation parameters programmatically. You also can configure these
parameters interactively using the Configure Simulation Parameters dialog
box. Access this dialog box by double-clicking the Input Node or by right-
clicking the border and selecting Configure Simulation Parameters from
the shortcut menu.

In the "Continuous Linear Systems” Sub palette we have important
blocks for we will use when creating our model:

| x|
‘ﬂ“ l C{,Search I o Wigw ™ |
iy o O
(<] (=]
Inteqgratar Derivakive Transport Delaw
O oo Bt
i I
State-Space Transfer Fun... Zero-Paole-Gain
(R g
k. Lo
Continuaus ©... Conktinuous K...

The most used blocks probably are Integrator, Transport Delay, State-
Space and Transfer Function.

When you place these blocks on the diagram you may double-click or
right-click and then select “Configuration...”

D
Integrator - Integrates a continuous input signal using the ordinary
differential equation (ODE) solver you specify for the simulation.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

61 Alternatives to MATLAB
==

Transport Delay - Delays the input signal by the amount of time
you specify.

==

Transfer Function - Implements a system model in transfer

function form. You define the system model by specifying the Numerator
and Denominator of the transfer function equation.

o
[A][E]

=] State-Space - Implements a system model in state-space form. You
define the system model by specifying the input, output, state, and direct
transmission matrices.

The “Signal Arithmetic” Sub palette is also useful when creating a
simulation model:

=
"ﬁ" I C{,Slﬁearch I B Mg ™ l
& —
> -
Gain Summation Multiplication

Example:

Below we see an example of a simulation model using the Control and
Simulation Loop.

B! Simulation Examle. vi Block Diagram

File Edit “Wew Project Operate Tools ‘window Help
q’>|@| @@ [ba@]t [130t Application Fort [~ 1 1 "E' =
-~
Eampling Time
3 [M[Error

|+ Runge-kutta 1 (Euler) *|

< >

Notice the following:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

62

Alternatives to MATLAB

Click on the border of the simulation loop and select “Configure

Simulation Parameters...”

‘Wisible Trems

Help

Description and Tip...

Breakpoint

Simulation Palette
S Auko Grow

Properties

The following window appears (Configure Simulation Parameters):

) Configure Simulation Parameters

Simulation Pararmeters | Timing Parameters

Simulation Time

Initial Time {s)

[0 s

Solver Method
CDE Solver

|Runge-Kutta 1 (Euler)

b | [ranyInf Check

Continuous Time Step and Tolerance
Skep Size (5]
o1 ¢

Minimum Step Size (s) Mazxirmum Skep Size (s)

1E-10 1

Relative Tolerance Absoluke Tolerance

0,001 1E-7

Discrete Time Step

nable Synchronized Timing

Synchtonize Loop to Timing Source

Timing Source
Source bype

1 kHz Clack

1 kHz <reset at structure stark=

Other «<defined by source name or kerminal =

Source name

‘lkHz

Loop Timing Attributes

Period
1000 - [] Auto Period
Offset | Phase Pricrity

Tirneaut {ms)

=
i
o]
=3
3
i

Discrete Step Size (s) -1 = -1 T
0,1 Auko Discrete Time
Processor Assignment
Mode Processar
2
[(o] 9] [Cancel] [Help [(o] 9] [Cancel] [Help

In this window you set some Parameters regarding the simulation, some

important are:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

63 Alternatives to MATLAB

¢ Final Time (s) - set how long the simulation should last. For an
infinite time set “Inf”.

e Enable Synchronized Timing - Specifies that you want to
synchronize the timing of the Control & Simulation Loop to a timing
source. To enable synchronization, place a checkmark in this
checkbox and then choose a timing source from the Source type list
box.

Click the Help button for more details.

You may also set some of these Parameters in the Block Diagram:

ampling Timeﬂ/
i

o IE

| Runge-Kutta 1 (Euler) *fsp

You may use the mouse to increase the numbers of Parameters and right-
click and select “Select Input”.

[End of Example]

9.5 Mathematics in LabVIEW

When it comes to mathematics and numerical techniques, LabVIEW offers
functionality similar to what exists in MATLAB.

Below we see the Mathematics palette in LabVIEW:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

64

Alternatives to MATLAB

4 Q, Search

@% Custaomize ¥
g ety b et
E> E-I [
Mumeric Elementary: Linear Algebra
3 [
il it
LHHHHE [=it)d
Inkerp ® Extrap Inteq & Diff
[B]
X
Cptimization Differential Eqs
4]
Epu i
GEOmekry Polynomial — Script & Formula

Here we have functionality for:

Basic math operations
Linear Algebra

Curve Fitting
Interpolation
Integration and Differentiation
Statistics

Optimization

Differential Equations (ODES)
Polynomials

MATLAB integration (MATLAB Script)

Below we will take a closer look at some of these functions.

9.5.1 Basic Math

LabVIEW have lots of functionality for basic math operations,
trigonometric functions, etc.

Numeric Palette in LabVIEW:

Below we see the Numeric palette in LabVIEW:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

65 Alternatives to MATLAB

| 4 I C:gSearch I %Customize' l

[=> >

-

N/
N/
£
E

Add Subtrack Tulkiphy Divide Quotient & R... Conversion
=5 =
@ |> D @ =Hi S
Increment Decrement Add Array Ele.., Multiply Array,.. Compound Ar,., Data Manipul,..

v
7
W
H

>

7

Absolute Yalue Round ToMe... Round Towar.., Round Towar.., Scale By Pow,.. Conplex
3
> [[B> [
Square Rook Squate Meqgate Reciprocal Sign Scaling
7] M
(B
Mumeric Cons... Enum Constant Ring Constant Random Mum... Expression M... Fixed-Point
] M
DEL Mumeric ... +Inf -Inf IMachine Epsilon Iath Conskants

Here we have basic math functions, such as Add, Subtract, Multiply,
Divide, etc.

Example:

Below we see a simple example using the basic math features:

Block Diagram: Front Panel:

ic Math, Example. vi Front Panel |ZHE|[1_(|

| Basic Math Example. vi Block Diagram
File Edt Y“iew Project Operate Tools Window Help

OE Dj} 13pt Application Font - l .Q 2 {%‘

x
¥
S b T @

Ele Edit Wiew Project Operate Tools Window Help @
& |{§} ©|E | 13pt Application Font | = || !,:.v”‘.“u:v”ﬁv” «Q, l“?l 1
A~

| ™
|

I3
554
[~

[End of Example]

9.5.2 Linear Algebra

LABVIEW have lots of VIs (functions) for Linear Algebra. Below we see the
Linear Algebra palette in LabVIEW:

Linear Algebra Palette in LabVIEW:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

66

Alternatives to MATLAB

inear Algebra
4 I C%Search l %Customize'

Create Speci... Create Real ...

L
Matkrix
[Clewa] [CiTewa
wa] [ron
AxB Kronecker Prod
[Clowa] [GiT e | [Clowa] [Liilow]
MMatrix Rank Trace Test Matrix T... Condition Mu. ..
[Clea] [Gil e | [Cilewa] [Ciilea]
& [] Ed [
Matrix Sqrk Matriz Exp Matriz Power Matrix Log
e
A=UCR
i
D Generalized SWD

Schur

[LiiTewa]

Hessenberg

[Ldewa]

Eigenvalues a... GeneralizedE...

Sylvester Egs

[LziT e

Matrix Balance Back Transfor. ..

Lyapunoy Egs

[T
|41-A]

Matrix Chara. ..

ELAS

In LabVIEW is a matrix defi

ned as a 2-dimensional array, while a vector is

defined as a 1 dimensional array, see Figure below:

&) Untitled 3 Front Panel ®

B[(=]e

File Edit Yew Project Operate Tools ‘Window Help | .,JH
oy I{E}l ©|E| | 13pt Application Font | = ” =;|'||-ﬂ|]:'i|ﬁ'i |E§'}v ..q l‘fg) i
A
2D Array {makrix) 10 Array (veckor)
2)
30 5'-2 34 5'1 ﬂz_
 Em —r = o
v
.,-'6
J4 1
b
4 X

9.5.3 Curve Fitting

LabVIEW offers lots of functionality for Curve Fitting.

Fitting palette in LabVIEW:

MATLAB Course - Part

[1I: Simulink and Advanced Topics in MATLAB

67 Alternatives to MATLAB

4 QSearch £, Customize ™

.-_f[] t i .[] {E[] {?‘)‘,__ﬂ""[]
Linear Fit Exp Fit Power Fit Gauss Peak Fit Logarithm Fit
' Za; fr By e :'sj:;;'!:

Palynomial Fit Gen. Linear Fit Cubic Spline Fit B-Spline Fit Fit on a Sphere

P b = Apv k
‘{’.‘:,“33.- f{t‘::ﬂz.-] %
Monlinear Cur,.. Constrained ... Curve Fit Advanced Cu...

9.5.4 Interpolation

LabVIEW offers lots of functionality for Interpolation.

Interpolation & Extrapolation palette in LabVIEW:

Interpolation & Extrapolation

4 Q\Search %Custnmize'

Interp Interp 2d Ef|
id 2d Prlesh
Interpolate 10 Interpolate 20 Create Mesh ...
HUF'._ I'IUI‘-._ 'IU[\EN’ 1"'5'::!"‘!-3’
Spline Interp... Hermite Inter... Create Interp... Ewaluate Inke...
jvl"ﬁu Iy
Xi N
Interpolate 1... Search Order...
: 4] [
Eagy e SFLINE SFLINE
Palynomial In... Rational Inter... Spline Interp... Spline Interp. ..

9.5.5 Integration and Differentiation

LabVIEW offers lots of functionality for numerical integration and
differentiation.

Integration and Differentiation palette in LabVIEW:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

68 Alternatives to MATLAB

Integration & Differentiation

4 CL Search @Q) Custarize *
Ia Ia Ia Ia Ia
tg I dHit]
1 Tt it [nixde T
Mumeric Inke,.. Unewen Mum, ., Quadrature Inteqral =(t) Derivakive x(k)
Jiix)
Time Damain ...

9.5.6 Statistics

LabVIEW offers lots of functionality for Statistics, including basic
functionality for finding mean, median, standard deviation, etc.

Probability and Statistics palette in LabVIEW:

Probability & Statistics

1 Q\Search €, Custamize ™

TR TR TR TR TR
MEAN _d|!]ln_ ok ol ‘.j]?’“
Mean Meas, of Mean 5.0, & Variance Meas, of Spr.., Percentiles
TH LT T T TR LT
] Wl MODE I

FMS MSE i [] % il -
RMS MSE Moment abou, .. Covariance Mex Mode Median
TR TR ST TR TR

ADY T ks
iilln, il HTP Spearmen Kend al

Histogram Gen, Histogram Correlation C... Correlation C... Correlation <.,

Al A e ([Ll

Probability Hypothesis Test AMOYA Statistics Histagrarm

9.5.7 Optimization

LabVIEW offers lots of functionality for Optimization.

Optimization palette in LabVIEW:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

69 Alternatives to MATLAB

Optimization

4 QSearch l, Customize ™

LF Quadratic Pra... Unconskr FLP Conskr M

Ty Ty
et it [157 Jfa¥a’ e

Brent with De... Golden Sectio... CanDh Dovnhill Simpl... Find Al Minim... Find Al Minim. ..

Cheby
APPTEK

Chebyshey &...

9.5.8 Differential Equations (ODESs)

LabVIEW offers lots of functionality for solving Differential Equations.

Ordinary Differential Equations palette in LabVIEW:

Ordinary Differential Equations

4 O\SEarcl‘l £, Customize =

i i i i i i
Funge Cash
_[F(x.t] Kutba Farp Euler
ODE Salver R 4th Qrder CK Sth Order Euler Method
HUF =] [HUM [=TH
aiebiiz ai+bii=i aiehizi aiebiizn

Lin, n=Crd Mum Lin, f-Ord Sy Line Swst Mome Lin, Sysk Swm

[Fizme
Fiadauf

DAE Radau 5.,

9.5.9 Polynomials

LabVIEW offers lots of functionality for creating and manipulating
Polynomials.

Polynomial palette in LabVIEW:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

70 Alternatives to MATLAB

!tﬂi
4 I CkSearch l £, Customize ™ 1
Zau Sk’ Zau Za Za
i 1= e 1z
add Poly Subtract Poly Fultiply Pioly Divide Poly Poly Composite
Za’ Zam’ Za’ Za Za
GED LCM 4P Tptads Pl
Paly GCD Paly LM nth Derivative Indef, Integral Integral
Zaw’ Zam’ Za Ta Za
’f\ “,r\#? -é%* B-+8 s
Paly Roaots Real Zeros C... Roots Classifi,.. Sort Comples,.. Unique Mumb. ..
Sa Sa Da Zaw
kS (EEE] order 'FP?"I
Create Paly Remove Zeros Order of Paly Palynomial Plok
Zag ZagH’ Zag
g Pidl.ea Zaral

Lin. Evaluation Poly Evaluation Ewaluate Poly. .

Za’ 2k’ Zau 4 3
K; Fird e L ()
F-r B % wE P aea

FFE Poly From PFE Poly Eigenvalue Orthogonal &... R.ational

9.6 MATLAB Integration (MATLAB
Script) in LabVIEW

It is possible to integrate MathScript code in LabVIEW, which has similar
syntax as MATLAB (see previous chapter about MathScript). In addition,
there is also possible to integrate MATLAB code directly using something
called the "MATLAB Script”.

The "MATLAB Script” calls the MATLAB software to execute scripts. You
must have a licensed copy of the MATLAB software version 6.5 or later
installed on your computer to use MATLAB script nodes because the script
nodes invoke the MATLAB software script server to execute scripts written
in the MATLAB language syntax. Because LabVIEW uses ActiveX

technology to implement MATLAB script nodes, they are available only on
Windows.

Example:

Block Diagram: Front Panel:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

71 Alternatives to MATLAB

B! MATLAB Script Example.vi Block Diagram ! MATLAB Script Example.vi Front Panel

Bl Edt dew EmiTi‘ ﬁa; Toolks Window _Help @, File Edit W¥iew Project Operate Tools Window Help
B e e s EeW) — — I
— & |{§} ©|E | 13pt Application Font | I| =’«_-"l| .u.vl‘&v| -Q 7 1
3 ~
MATLAB script)
[n, cols_a]=size(a); A C
[roves_b, pl=size(B); A ¥
F cols_a == rows_b g0 o 2 a -5 :r) 0 Iz 1 i B
m=cols_a; 0
A Cmzerasinp); 9 0 ° 4 o St 1 0
for i=1:n C 1] 0 0 ~ AT
(5o For j=1:p E—ibe - g g g =
W= S _ A4 b4
B for ke=1:m - -
[T kB KB(R,
end
g(m)=W; 4 g
En -~
end E) o 2 1 a =
elseif cols_a ~=rows_b # a 1 o]
—HNal; o
end g i w — —
1 2] 3]
3 b
< 3 < 3

The MATLAB Script Node is found in the Mathematics palette (Mathematics
— Scripts & Formulas — Script Nodes):

r. s & Formul _ E]
i l QSearch I @ Custarize™ I

Script Modes

o

e ey K] []' B
B =Rl
[-B) IMathScript Farriula Mode
Mumeric Elementary Linear Algebra o
abg
vy dfae” f0n
— [iar Formula Farmila Parsing
Fikting Interp & Extrap Inteq & Oiff 4 s 4
- < L 09, i ey
i & 2 1D & 2D Eval... Calculus Zeros
Prob & Stat Optimizatio
M 4
{E’_. Fas
0

Geomekty Palyromial

9.7 Python

Python is a widely used high-level, general-purpose, interpreted, dynamic
programming language.

You can install a basic Python IDE from www.python.org.

For more MATLAB look and feel the Anaconda Python distribution is
recommended (with all major Scientific packages included, such as
NumPy, SciPy, Matplotlib...).

The Spyder IDE is also included (which has much more features than the
basic IDE).

I have written the following Python textbooks:

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

http://www.python.org/

72 Alternatives to MATLAB

Python Programming: This is a textbook in Python Programming with
lots of Practical Examples and Exercises. You will learn the necessary
foundation for basic programming with focus on Python.

Python for Science and Engineering: This is a textbook in Python
Programming with lots of Examples, Exercises, and Practical Applications
within Mathematics, Simulations, etc. The focus is on numerical
calculations in mathematics and engineering. Necessary theory is
presented in addition to many practical examples.

Python Python for Science
Programming and Engineering

Hans-Petter Halvorsen Hans-Petter Halvorsen

https://www.halvorsen.blog https://www.halvorsen.blog

Python Programming Python for Science and Engineering

These textbooks can be downloaded for free. These textbooks have many
of the same examples and exercises you find in the MATLAB textbooks.

For more information, please see the following:

https://www.halvorsen.blog/documents/programming/python/

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

https://www.halvorsen.blog/documents/programming/python/

Appendix A -
MathScript Functions

Here are some descriptions for the most used MathScript functions used in
this course.

Function Description Example
plot Generates a plot. plot(y) plots the columns of | >* = [0:0.01:17;
. A >Y = X.*X;
y against the indexes of the columns. >plot (X, ¥)
tf Creates system model in transfer function snun=[1];
. . >den=[1, 1, 1];
form. You also can use this function to state- SH - tf(num, den)
space models to transfer function form.
poles Returns the locations of the closed-loop poles | ~7°m= -/
of a system model. SH-t£ (num, den)
>poles (H)
- " . R >[num, den, delay, Ts] =
tfinfo SR;st;Jerrr;lsr::ofg;Tann about a transfer function tﬁﬁfo(sislﬂi)ay s
>num=[1,1];
step Creates a step response plot of the system >d‘;n=[1,_1'3];

model. You also can use this function to return | Su_i¢ (num, den) ;
the step response of the model outputs. If the | >t=[0:0.01:10];
model is in state-space form, you also can use | “SteP(H ©);
this function to return the step response of the
model states. This function assumes the initial
model states are zero. If you do not specify an
output, this function creates a plot.

Isim Creates the linear simulation plot of a system | >* s[i;;?éliio]i*t) '
model. This function calculates the output of @ | S1gim(systn, E,)
system model when a set of inputs excite the

model, using discrete simulation. If you do not

specify an output, this function creates a plot.

Sys_order1 | Constructs the components of a first-order S

- system model based on a gain, time constant, | .5 - sysiorderl(K, tau)
and delay that you specify. You can use this
function to create either a state-space model
or a transfer function model, depending on the

output parameters you specify.

Sys_order2 | Constructs the components of a second-order | 4= = 7-°
- system model based on a damping ratio and >[num, den] = sys_order2 (wn,
natural frequency you specify. You can use dr)
A . A _ >SysTF = tf (num, den)
this function to create either a state-space A, B, C, D] ~ sys order2 (un,

model or a transfer function model, depending | ar)

on the output parameters you specify. >SysSS = ss(a, B, C, D)
damp Returns the damping ratios and natural PlelE, wm, ol = e (Sysin)
frequencies of the poles of a system model.
pid Constructs a proportional-integral-derivative if;‘i - 825
(PID) controller model in either parallel, SSySOUtTF = pid(Ke, Ti,
series, or academic form. Refer to the "academic') ;

LabVIEW Control Design User Manual for
information about these three forms.

73

74 Appendix A - MathScript Functions

conv Computes the convolution of two vectors or o g ji Sl
matrices. >C = conv(Cl, C2)
series Connects two system models in series to >Hseries = series(Hl,H2)

produce a model SysSer with input and output
connections you specify

feedback Connects two system models together to ;i;’iilg)%d = Socene (Syetn 1,
produce a closed-loop model using negative or -

positive feedback connections

ss Constructs a model in state-space form. You o Té’ef;
also can use this function to convert transfer >c = B
function models to state-space form. >SysOutSS = ss(A, B, C)
ssinfo Returns information about a state-space S
system model. s - 20 1)

>D
>SysInSS = ss(A, B, C, D)
>[A, B, C, D, Ts] =
ssinfo (SysInSS)

pade Incorporates time delays into a system model ZI[SZT) den] = pade (delay,
using the Pade approximation method, which S[A, B, C, D] = pade (delay,
converts all residuals. You must specify the order)

delay using the set function. You also can use
this function to calculate coefficients of
numerator and denominator polynomial
functions with a specified delay.

bode Creates the Bode magnitude and Bode phase i‘;:i:g] s
plots of a system model. You also can use this | Sy = t£(num, den)
function to return the magnitude and phase >bode (H)

values of a model at frequencies you specify.
If you do not specify an output, this function
creates a plot.

bodemag Creates the Bode magnitude plot of a system | ~[mad, wout] = bodemag(Sysin)

>[mag, wout] bodemag (SysIn,

model. If you do not specify an output, this (wmin wmax])
function creates a p|0t. >[mag, wout] = bodemag(SysIn,
wlist)
H i >num = [1]
margin Calculates a_nd/or plo_ts the_ smalle_:st gain and e S
phase margins of a single-input single-output | S5 - t¢(num, den)
(SISO) system model. The gain margin margin (H)

indicates where the frequency response
crosses at 0 decibels. The phase margin
indicates where the frequency response
crosses -180 degrees. Use the margins
function to return all gain and phase margins
of a SISO model.

margins Calculates all gain and phase margins of a Eggf;s?g; pmf, pm] =
single-input single-output (SISO) system

model. The gain margins indicate where the
frequency response crosses at 0 decibels. The
phase margins indicate where the frequency
response crosses -180 degrees. Use the
margin function to return only the smallest
gain and phase margins of a SISO model.

For more details about these functions, type “help cdt” to get an
overview of all the functions used for Control Design and Simulation. For
detailed help about one specific function, type “help <function_name>".

Plots functions: Here are some useful functions for creating plots: plot,
figure, subplot, grid, axis, title, xlabel, ylabel, semilogx - for more
information about the plots function, type “help plots”.

MATLAB Course - Part Ill: Simulink and Advanced Topics in MATLAB

Appendix B:
Mathematics characters

I
|‘mlpha || o ||‘l.upsilon ” u ”\s.im ” - |
[beta LB |[whi [[_o][ueq L= |
[gamma || y |[\chi |[_x_][unfty =]
| \delta [[& |[\psi Il v [[ewbsuic || & |
[‘kepsilun ” € H‘mmega ” i ”\diamundsuil ” * |
[\zeta [¢ |[\Gamma || T |[thearsuit |[v |
[leta [n|[\Dela LA |[vpadesuic || & |
| theta [o |[\Theta || © |[vefrightarrow|[« |
[vartheta || & |[ambda || A |[Vefarow |[« |
|ota e [L © |[wparow [T |
Pkappa || x || L0 |[vighrow || - |
[\lambda [[& ||sigma [= |[\downarrow |[| |
[\mu |l » |[Wpsiton || ¥ |[ire |
[\ [L_v [L@ |[lem |
i L& [L ¥][\eea L=
[pi L= |[omega || 2 [[tpropo |[= |
[\rho |[_e |[Moral LY |[pamial [4 |
|k~:igma || i ||\exiﬁt ” 3 ”\hull:t ” |
[varsigma || ¢ ||wi I |
[au |7 | [oone [[=][we L * |
Dequiv |[= J[wpprox J{ = [[ualeph || x]
[\im LS [Re [% [[we |
otimes || @ J{wops |[& [[ossh || & |
[\cap L0 [LY |[supsetea [o |
| \supset || 2 ||wubseeq || C |[subset | € |
[tint | [|[tin [5 |[we L e |

75

Hans-Petter Halvorsen

E-mail: hans.p.halvorsen@usn.no

Blog: http://www.halvorsen.blog

University of South-Eastern Norway

WWW.UsN.No

mailto:hans.p.halvorsen@usn.no
http://www.halvorsen.blog/
http://www.usn.no/

]34

KT

[=]

Simulink and Advanced
Topics in MATLAB

	Preface
	Table of Contents
	1 Introduction
	2 Simulink
	2.1 Start using Simulink
	2.1.1 Block Libraries
	2.1.2 Create a new Model

	2.2 Wiring techniques
	2.3 Help Window
	2.4 Configuration
	2.5 Examples
	Task 1: Simulation in Simulink – Bacteria Population

	2.6 Data-driven Modelling
	2.6.1 Using the Command window
	2.6.2 Using a m-file
	2.6.3 Simulation Commands
	Task 2: Mass-Spring-Damper System
	Task 3: Simulink Simulation

	3 Debugging in MATLAB
	3.1 The Debugging Process
	Task 4: Debugging

	4 More about Functions
	4.1 Getting the Input and Output Arguments
	Task 5: Create a Function
	Task 6: Optional Inputs: Using nargin and nargchk
	Task 7: Optional Outputs: Using nargout and nargoutchk

	5 More about Plots
	5.1 LaTEX or TEX Commands
	Task 8: LATEX Commands
	Task 9: 3D Plot

	6 Using Cells in the MATLAB Editor
	Task 10: Using Cells

	7 Importing Data
	Task 11: Import Data

	8 Structures and Cell Arrays
	8.1 Structures
	Task 12: Using Structures

	9 Alternatives to MATLAB
	9.1 Octave
	9.2 Scilab and Scicos
	9.3 LabVIEW MathScript
	9.3.1 How do you start using MathScript?
	9.3.2 Functions
	9.3.3 ODE Solvers in MathScript

	9.4 LabVIEW
	9.4.1 The LabVIEW Environment
	9.4.2 Front Panel
	9.4.3 Block Diagram
	9.4.4 LabVIEW Control Design and Simulation Module

	9.5 Mathematics in LabVIEW
	9.5.1 Basic Math
	9.5.2 Linear Algebra
	9.5.3 Curve Fitting
	9.5.4 Interpolation
	9.5.5 Integration and Differentiation
	9.5.6 Statistics
	9.5.7 Optimization
	9.5.8 Differential Equations (ODEs)
	9.5.9 Polynomials

	9.6 MATLAB Integration (MATLAB Script) in LabVIEW
	9.7 Python

	Appendix A – MathScript Functions
	Appendix B: Mathematics characters

